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Introduction

* History:
* Education: University of Tennessee Knoxville (PhD, MS, BS)
* Oak Ridge National Laboratory: Staff Data Scientist
* LSU: Assistant Professor in CSE, previously Senior Research Scientist

* Research: AI/ML, applications to national security, cybersecurity
* Teaching:
* HNRS3025: Large Language Models for Real World Applications
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What is Numerical Methods?

* Numerical methods are algorithms designed to solve mathematical

problems by approximating numerical solutions, especially when exact
analytical solutions are infeasible or impractical.

* Computers are very good at this — lots of iterative algorithms based on
simple calculations.

* Challenges in Computerized Numerical Methods:
* CPUs only have hardware for addition and multiplication.
* Numbers with inherently limited precision
* Discrete rather that continuous computation

* Because of these challenges, computerized numerical methods have
errors.



What will be Covered?

Computer Arithmetic and Errors

Taylor Approximations

Root Finding

Interpolation

Numerical Differentiation & Integration
Linear Equations

Numerical Linear Algebra
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Applications of Numerical Methods

Numerous Applications!
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Syllabus

* Syllabus can be accessed through jamesghawaly.org

* Link here:
https:/ /jamesghawaly.org/files/CSC2262_Ghawaly_syllabus.pdf



Computer Arithmetic



Numerical Representation

e Decimal : base-10

* Base or radix of 10: indicates that there are 10 unique digits for
representing numbers: 0, 1,2, 3,4,5,6,7,8,9

* What does the number 547.651 actually mean?
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Numerical Representation & Conversion

* Binary : base-2

* Base or radix of 2: indicates that there are 2 unique digits for
representing numbers: 0, 1

* What does the number 1011.001, actually mean?
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Numerical Representation & Conversion

e Hexadecimal : base-16

* Base or radix of 16: indicates that there are 16 unique digits for
representing numbers: 0, 1,2,3,4,5,6,7,8,9, A, B, C,D, E, F

* What does the number F32. C; 4 actually mean?

F 3 2 " C F3216 :2'16O+3‘161+15°162 — 389010
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(General Numerical Conversion

* Let’s say we have a decimal integer X containing n digits that we wish to
convert to base-r

* We can express X as follows

x=a, r"+a,_ - 14+a, , "%+ -++a;-rt+ay-r’

* We wish to determine the coefficients a,,, a,,_1, ... , g for 0 < a <r

* We can solve this by repeatedly dividing x by r and recording the
quotient and the remainder.
* The remainders become the coefficients, starting with L.SB
* After each division, the integer part of the quotient becomes the new dividend

* Continue until quotient is 0



Decimal to Base-2 Examples
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Decimal to Base-2 Examples

Convert Y62, Yo buse-2 Convert 256, to bue -2
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Decimal to Base-16 Examples
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Decimal Fraction to Any Base

* Let’s say the decimal x has a fractional part Z containing n digits that we wish to
convert to base-r

* We can express Z as follows
Z=ap T "+ ap "D tq, oD 4t pq ]

* We want to solve for the coetficients a4, a,, ... , a,, which will be the digits
representing the number in base-r

* We can solve this by repeatedly multiplying z by .
* the fractional part of  + Z becomes the next value to be multiplied by r
* the integer part becomes the coetficient
* Continue until the fractional part is 0



Decimal Fraction
to Base-2
Example
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Decimal Fraction to Base-16 Example
BATY . 1096\A \N06LSg be base-\bo

AT L b buse b (0109618140625, 4o bose-to
—
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NOTE: Many calculators will have roundoff errors when doing this calculation!!



Repeating Decimals

 Different numerical bases have fractional numbers that cannot be
represented in a finite number of digits.

* For example: base-10, 1/; = 0.333333 ... ;, = 0. 34,
* However, in base-3, 1/3 = 0.15
* So how would you convert 0.1010101010 ..., = 0.10, to decimal?

* Remember, a number with base-y containing n digits can be converted
to decimal by summing n powers of y and multiplying each by the
corresponding digit.

* But this would be an infinite series!



Repeating Decimals

e Geometric Series to the rescue!

* From the geometric series, we have the following:

n ' 1_7,.n+1
Zrl= , r+1
— 1—7r
L U
Zrl= , r+1
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Repeating Decimal: Example with Geometric
Series
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Repeating Decimal: Example with Geometric Series

Convert Q.Gﬂ fo decvval
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Repeating Decimals: Special Cases

* What if we have an n-digit (bit) integer in base-2 that contains only 1’s?

* From geometric series:

be represented by n bits!

{1111111}2 — ZTl _ 1 ) Maximum value that can

1

n
* For any n-digit number in base-r that contains only (r — 1)s: 7" — 1

* Likewise, for n-digits of a binary fraction, we can apply geometric series

-1 . 2_17’l+1

n
.2
0.1111111 =Zz—1l = —1-—2"
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Binary Addition and Multiplication

* Binary addition and multiplication use the same rules that you learned in
grade school for decimal addition and multiplication.

* Why do we care about these two operations?
* They are typically the only ones that are directly supported by CPU hardware
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Subtraction Using 2’s Complement

* Subtraction is just addition with a negative number: x —y = x + (—y)

* Objective: Design a method to represent a negative number such that we can
use the addition hardware for subtraction.

* For this we use 2’s complement

* To calculate 2’s complement of a number:
* Calculate 1’s complement of the number by tlipping all the bits
* Add 1 to 1’s complement to get 2’s complement of

* We can now do x — y by doing x + 2’s complement(y)

* In this system, the most significant bit (MSB) is the sign bit
* 11is negative (-) and 0 is positive (+)
* If the result is negative, calculate 2’s complement of the result to get its value. If it’s
positive, leave it alone
* Carry out bit is discarded



2’s Complement Subtraction Examples
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