CS2262: Numerical Methods

January 16, 2024 Dr. James Ghawaly

Introduction

- History:
 - Education: University of Tennessee Knoxville (PhD, MS, BS)
 - Oak Ridge National Laboratory: Staff Data Scientist
 - LSU: Assistant Professor in CSE, previously Senior Research Scientist
- Research: AI/ML, applications to national security, cybersecurity
- Teaching:
 - HNRS3025: Large Language Models for Real World Applications
 - CS2262: Numerical Methods
 - More to come!

What is Numerical Methods?

- Numerical methods are algorithms designed to solve mathematical problems by approximating numerical solutions, especially when exact analytical solutions are infeasible or impractical.
- Computers are very good at this lots of iterative algorithms based on simple calculations.
- Challenges in Computerized Numerical Methods:
 - CPUs only have hardware for addition and multiplication.
 - Numbers with inherently limited **precision**
 - **Discrete** rather that continuous computation
- Because of these challenges, computerized numerical methods have errors.

What will be Covered?

- 1. Computer Arithmetic and Errors
- 2. Taylor Approximations
- 3. Root Finding
- 4. Interpolation
- 5. Numerical Differentiation & Integration
- 6. Linear Equations
- 7. Numerical Linear Algebra
- 8. Differential Equations and Applications

Applications of Numerical Methods

Numerous Applications!

Syllabus

- Syllabus can be accessed through jamesghawaly.org
- Link here: https://jamesghawaly.org/files/CSC2262_Ghawaly_syllabus.pdf

Computer Arithmetic

Numerical Representation

- Decimal : base-10
- Base or radix of 10: indicates that there are 10 unique digits for representing numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- What does the number 547.65_{10} actually mean?

Numerical Representation & Conversion

- **Binary** : base-2
- Base or radix of 2: indicates that there are 2 unique digits for representing numbers: 0, 1
- What does the number 1011.001_2 actually mean?

Numerical Representation & Conversion

- Hexadecimal : base-16
- Base or radix of 16: indicates that there are 16 unique digits for representing numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- What does the number $F32.C_{16}$ actually mean?

$$F32_{16} = 2 \cdot 16^0 + 3 \cdot 16^1 + 15 \cdot 16^2 = 3890_{10}$$
$$0.C_{16} = 0 \cdot 16^{-1} = \frac{1}{16_{10}}$$

General Numerical Conversion

- Let's say we have a decimal integer *x* containing *n* digits that we wish to convert to base-*r*
- We can express x as follows $x = a_n \cdot r^n + a_{n-1} \cdot r^{n-1} + a_{n-2} \cdot r^{n-2} + \dots + a_1 \cdot r^1 + a_0 \cdot r^0$
- We wish to determine the coefficients $a_n, a_{n-1}, \ldots, a_0$ for $0 \le a < r$
- We can solve this by repeatedly dividing *x* by *r* and recording the quotient and the remainder.
 - The remainders become the coefficients, starting with LSB
 - After each division, the integer part of the quotient becomes the new dividend
 - Continue until quotient is 0

Decimal to Base-2 Examples

Convert 463, to	base-2	Convert 463,0 to base-2
		$2 \Pi (2)$
2 463		2 1221 1
2 231 1		
2/115		
2157		2157
2 28 1		
2 14 0		2114 0
$2 \overline{170}$		217 0 $463_{10} = 111001111_{2}$
$2\overline{1}$		213 1
\circ		
MS INS	25° 12 64 32 12 8 4 2 1	O (DE MSB'

Decimal to Base-2 Examples

Convert 463,0 to base-2	Convert 256, to base -2
2 [463	2 256
2 231 1	2 [128 0
2/115 1	2640
2571	232 D
2128 1	2/16 0
2114 D	218 0
217 0	214 D
$2\overline{3}$ $1463_{10} = 11100111_{2}$	$2/2$ 0 $256_{10} = 100000000$
	$2\overline{1}$
O () E MSB	ιΟ

Decimal to Base-16 Examples

Convert 16243, to base-16		Convert 63406, to base-16
110 110243		11_{0})(-24D(-
	• • •	
16 1015 3		163962 E
14 163 7		16 247 A 63406 = F7AE
$16\overline{)3}$ F $16243_{10} = 3F73_{11}$	2	16/15 7
0 3 🔱		D F
0×3F73		

Decimal Fraction to Any Base

- Let's say the decimal x has a fractional part z containing n digits that we wish to convert to base-r
- We can express z as follows $z = a_n \cdot r^{-n} + a_{n-1} \cdot r^{-(n-1)} + a_{n-2} \cdot r^{-(n-2)} + \dots + a_1 \cdot r^{-1}$
- We want to solve for the coefficients a_1, a_2, \ldots, a_n , which will be the digits representing the number in base-r
- We can solve this by repeatedly multiplying z by r.
 - the fractional part of $r \cdot z$ becomes the next value to be multiplied by r
 - the integer part becomes the coefficient
 - Continue until the fractional part is $\boldsymbol{0}$

Decimal Fraction to Base-2 Example

756.375, to base-2 · split into integer and fractional part Integer Part Fractional Part 756, to tase-2 0.375, to tase -2 (2)(0.375)=0.75-> 0 2 1756 $(2)(0.75) = 1.5 \rightarrow 1$ $(2)(0.5) = 1.0 \rightarrow 1$ 2 378 21 189 194 $0.375_{0} = 0$ 47 756.375 756,0 =

Decimal Fraction to Base-16 Example 8974.109619140625,0 Hobase-16

o to base-16 / 0.109619140625,0 to base-10 $(16)(0.109619140625) = 1.75390625 \Rightarrow)$ $(16)(0.75390625) = 12.0625 \Rightarrow C$ $(16)(0.0625) = 1.0 \Rightarrow 1$ 1260 35 0.1096191410625 3 1612 897 10 = 230230E.1

NOTE: Many calculators will have roundoff errors when doing this calculation!!

Repeating Decimals

- Different numerical bases have fractional numbers that cannot be represented in a finite number of digits.
- For example: base-10, $\frac{1}{3} = 0.333333 \dots _{10} = 0.\overline{3}_{10}$
- However, in base-3, $1/_3 = 0.1_3$
- So how would you convert $0.1010101010 \dots_2 = 0.\overline{10}_2$ to decimal?
- Remember, a number with base-y containing n digits can be converted to decimal by summing n powers of y and multiplying each by the corresponding digit.
 - But this would be an infinite series!

Repeating Decimals

- Geometric Series to the rescue!
- From the geometric series, we have the following:

$$\sum_{i=0}^{n} r^{i} = \frac{1 - r^{n+1}}{1 - r}, \qquad r \neq 1$$

$$\sum_{i=1}^{n} r^{i} = \frac{r - r^{n+1}}{1 - r}, \qquad r \neq 1$$

$$\sum_{i=0}^{\infty} r^{i} = \frac{1}{1-r}, \qquad |r| < 1$$

Repeating Decimal: Example with Geometric Series

Convert $0.\overline{10_2}$ to base-10 $0.101010... = 1.2^{-1} + 0.2^{-1} + 1.2^{-3} + 0.2^{-4} + 1.2^{-5} + 0.2^{-6} + ...$ $= 2^{-1} + 2^{-3} + 2^{-5} + ...$

= $2^{-1}(2^{\circ}+2^{\circ}+2^{\circ}) \leftarrow \text{this is an infinite series with } r=2^{-1}$

 $=2^{1}\cdot\frac{1}{1-2^{2}}=\frac{1}{2}\cdot\frac{1}{1-\frac{1}{2}}=\frac{1}{2}\cdot\frac{4}{3}=\frac{4}{6}=\frac{2}{3}$

Repeating Decimal: Example with Geometric Series Convert 0.1011, to decimal -15 -16 0. 1011 1011 1011 1011 = $2^{1} + 2^{3} + 2^{4} + 2^{5}$ $= 2^{-1} (2^{\circ} + 2^{-1})$ +2 +2 +2 +2 +2 +2 +2 +2 +2 $=2^{-1}(2^{2}+2^{2}+2^{2}+2^{2}+2^{2}+2^{2}+2^{2}+2^{2}+2^{2}+2^{2})+2^{-1}(2^{-3}+2^{2}$ Grometric Series with r=2 $\frac{1}{2} \Rightarrow (2^{-1})(\frac{1}{2})$ Infinitic Geonetric Series with 8 $50\ 0.1011_2 = \frac{2}{3} + \frac{1}{15} =$ 15

Repeating Decimals: Special Cases

- What if we have an n-digit (bit) integer in base-2 that contains only 1's?
- From geometric series:

 $\{1111111\}_2 = 2^n - 1$ Maximum value that can be represented by *n* bits!

- For any *n*-digit number in base-*r* that contains only (r 1)'s: $r^n 1$
- Likewise, for n-digits of a binary fraction, we can apply geometric series

$$\{0.11111111\}_{2} = \sum_{i=1}^{n} 2^{-1^{i}} = \frac{2^{-1} - 2^{-1^{n+1}}}{1 - 2^{-1}} = 1 - 2^{-n}$$

Binary Addition and Multiplication

- Binary addition and multiplication use the same rules that you learned in grade school for decimal addition and multiplication.
- Why do we care about these two operations?
 - They are typically the only ones that are directly supported by CPU hardware

Subtraction Using 2's Complement

- Subtraction is just addition with a negative number: x y = x + (-y)
- Objective: Design a method to represent a negative number such that we can use the addition hardware for subtraction.
- For this we use 2's complement
- To calculate 2's complement of a number:
 - Calculate 1's complement of the number by flipping all the bits
 - Add 1 to 1's complement to get 2's complement of
- We can now do x y by doing x + 2's complement(y)
- In this system, the most significant bit (MSB) is the sign bit
 - 1 is negative (-) and 0 is positive (+)
 - If the result is negative, calculate 2's complement of the result to get its value. If it's positive, leave it alone
 - Carry out bit is discarded

